An exact solution to two-dimensional Korteweg-de Vries-Burgers equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L17
(http://iopscience.iop.org/0305-4470/26/1/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

An exact solution to two-dimensional Korteweg-de VriesBurgers equation

Wen-xiu Ma
CCAST (World Laboratory) PO Box 8730, Beijing, 100080, People's Republic of China, and (mailing address) Institute of Mathematics, Fudan University, Shanghai 200433, People's Republic of China

Received 9 November 1992

Abstract

By applying a special solution of square Hopf-Cole type to an ordinary differential equation, we propose a bounded travelling wave solution $u(x, y, t)=v(\xi)=$ $v(k x+b-\omega t)$ to the two-dimensional Korteweg-de Vries-Burgers equation is monotonic and possesses an inflection point with respect to ξ.

Integrable systems, both classical and quantum, are a fascinating subject. Decades of research in this area have led to mathematical developments which are quite beautiful. However, not all systems posed in physics are integrable (see Kruskal et al [1]), for instance, the Korteweg-de Vries-Burgers (KdV-Burgers) equation. Therefore the direct methods to solve nonlinear systems appear to be more powerful and important. In this letter we will propose an exact solution to a general two-dimensional Korteweg-de Vries-Burgers (2DKdV-Burgers for short) equation

$$
\begin{equation*}
\left(u_{t}+2 a u u_{x}+b u_{x x}+c u_{x x x}\right)_{x}+d u_{y y}=0 \tag{1}
\end{equation*}
$$

where a, b, c, d are constants, directly from the equation itself. Equation (1) is a two-dimensional generalization of KdV-Burgers equation served as a nonlinear wave model of fluid in an elastic tube (Johnson [2]), liquid with small bubbles (van Wijngaarden [3]) and turbulence (Gao [4]). Here we would like to construct an analytic solution of it by analysing an ordinary differential equation.

First we take the form of the required solution as follows

$$
u(x, y, t)=v(\xi) \quad \xi=k x+l y-\omega t
$$

where k, l, ω are constants to be determined, and thus 2DKdV-Burgers equation (1) becomes

$$
-\omega k v_{\xi \xi}+2 a k^{2}\left(v v_{\xi}\right)_{\xi}+b k^{3} v_{\xi \xi \xi}+c k^{4} v_{\xi \xi \xi \xi}+d l^{2} v_{\xi \xi}=0
$$

Integrating the above equation twice with regard to ξ, we obtain

$$
\begin{equation*}
-\omega k v+a k^{2} v^{2}+b k^{3} v_{\xi}+c k^{4} v_{\xi \xi}+d l^{2} v=K \tag{2}
\end{equation*}
$$

with the second integration constant K and the first one taken to be zero. Making the transformation

$$
v=v_{ \pm}=w_{ \pm}+\frac{\omega k-d l^{2} \pm \sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K}}{2 a k^{2}}
$$

equation (2) may be written as

$$
\pm \sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K} \omega_{ \pm}+a k^{2} w_{ \pm \pm}^{2}+b k^{3} w_{ \pm \xi}+c k^{4} w_{ \pm \xi \xi}=0 .
$$

Next we search for solutions of the following ordinary differential equation

$$
\begin{equation*}
p w+q w^{2}+r w_{\xi}+s w_{\xi \xi}=0 \tag{4}
\end{equation*}
$$

with constants p, q, r, s. Let us introduce a square Hopf-Cole transformation $w=$ $\alpha \phi_{\xi}^{2} / \phi^{2}, \alpha=$ constant. This moment we have

$$
\begin{aligned}
p w+q w^{2}+r w_{\xi} & +s w_{\xi \xi} \\
= & \alpha p \frac{\phi_{\xi}^{2}}{\phi^{2}}+\alpha^{2} q \frac{\phi_{\xi}^{4}}{\phi^{4}}+2 \alpha r\left(\frac{\phi_{\xi} \phi_{\xi \xi}}{\phi^{2}}-\frac{\phi_{\xi}^{3}}{\phi^{3}}\right) \\
& +2 \alpha s\left(\frac{\phi_{\xi \xi}^{2}+\phi_{\xi} \phi_{\xi \xi \xi}}{\phi^{2}}-\frac{5 \phi_{\xi}^{2} \phi_{\xi \xi}}{\phi^{3}}+\frac{3 \phi_{\xi}^{4}}{\phi^{4}}\right) \\
= & \alpha\left[p \phi_{\xi}^{2}+2 r \phi_{\xi} \phi_{\xi \xi}+2 s\left(\phi_{\xi \xi}^{2}+\phi_{\xi} \phi_{\xi \xi \xi}\right)\right] \phi^{-2} \\
& -2 \alpha\left(r \phi_{\xi}^{3}+5 s \phi_{\xi}^{2} \phi_{\xi \xi}\right) \phi^{-3}+\alpha\left(\alpha q \phi_{\xi}^{4}+6 s \phi_{\xi}^{4}\right) \phi^{-4} .
\end{aligned}
$$

Hence we may choose

$$
\begin{align*}
& \alpha q+6 s=0 \tag{5a}\\
& r \phi_{\xi}+5 s \phi_{\xi \xi}=0 \tag{5b}\\
& p \phi_{\xi}^{2}+2 r \phi_{\xi} \phi_{\xi \xi}+2 s\left(\phi_{\xi \xi}^{2}+\phi_{\xi} \phi_{\xi \epsilon \xi}\right)=0 . \tag{5c}
\end{align*}
$$

By (5.1), $\alpha=-6 s / q$, and by (5.2),

$$
\phi=\phi(\xi)=F_{1} \mathrm{e}^{\lambda \xi}+F_{2} \quad \lambda=-\tau / 5 s
$$

where F_{1}, F_{2} are constants and we need a condition $F_{1} F_{2}>0$ to avoid $\phi=0$. Now (5.3) reads as

$$
\left(p+2 \lambda r+4 \lambda^{2} s\right) \lambda^{2} F_{1}^{2} \mathrm{e}^{2 \lambda \xi}=0
$$

which requires $p=6 r^{2} / 25 s$ in order to generate non-trivial solutions. Therefore when $p=6 r^{2} / 25 s$, equation (4) has a solution

$$
\begin{equation*}
w=-\frac{6 s \lambda^{2}}{q} \frac{F_{1}^{2} \mathrm{e}^{2 \lambda \xi}}{\left(F_{1} \mathrm{e}^{\lambda \xi}+F_{2}\right)^{2}}=-\frac{6 r^{2}}{25 q s} \frac{\exp [-(2 r / 5 s) \xi]}{(\exp [-(r / 5 s) \xi]+E)^{2}} \tag{6}
\end{equation*}
$$

with an arbitrary constant $E>0$. It is easy to calculate

$$
\begin{equation*}
w_{\xi}=\frac{r E \psi_{\xi}^{2}}{5 q \psi^{3}} \quad w_{\xi \xi}=2 \alpha E \lambda^{4} \mathrm{e}^{2 \lambda \xi}\left(2 E-\mathrm{e}^{\lambda \xi}\right) \psi^{-4} \tag{7}
\end{equation*}
$$

where $\psi=\mathrm{e}^{\lambda \xi}+E$. Thus the solution (6) is monotonic and possesses an inflection point $\xi=(1 / \lambda) \ln (2 E)$. We note that under $w=\bar{w}-p / q,(4)$ may be transformed into

$$
\begin{equation*}
-p \bar{w}+q \bar{w}^{2}+r \bar{w}_{\xi}+s \bar{w}_{\xi \xi}=0 . \tag{8}
\end{equation*}
$$

The first and last coefficients of (8) are opposite sign since $p s=6 r^{2} / 25$. Guan and Gao [5] have made some qualitative analyses for this kind of equation and consider it difficult to find solutions of (8). Here we have presented a special solution to (8) which belongs to the first type of Guan and Gao [5] because of (7).

In what follows, we want to find solutions of (3) by using (4) and (8). Naturally we need

$$
\begin{equation*}
25 \operatorname{sgn}(c) c \sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K}=6 b^{2} k^{2} \tag{9}
\end{equation*}
$$

which corresponds to $p=6 r^{2} / 25 \mathrm{~s}$. Set

$$
f(\xi)=-\frac{6 b^{2}}{25 a c} \frac{\exp [-(2 b / 5 c k) \xi]}{(\exp [-(b / 5 c k) \xi]+E)^{2}} \quad E>0
$$

and obviously we have $|f(\xi)| \leqslant 6 b^{2} / 25|a c|$. If $c<0$, then we write equation (3+) as

$$
-\left(-\sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K}\right) w_{+}+a k^{2} w_{+}^{2}+b k^{3} w_{+\xi}+c k^{4} w_{+\xi \xi}=0
$$

By means of (8), it has a solution

$$
w_{+}=f(\xi)-\frac{\sqrt{\left(w k-d l^{2}\right)^{2}+4 a k^{2} K}}{a k^{2}}
$$

and by means of (4), equation (3-) has a solution $w_{-}=f(\xi)$. In this way, we see that

$$
v=v_{+}=v_{-}=f(\xi)+\frac{\omega k-d l^{2}-\sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K}}{2 a k^{2}}
$$

solves (2). Similarly, when $c>0$, we can find a solution of (2)

$$
v=v_{+}=v_{-}=f(\xi)+\frac{\omega k-d l^{2}+\sqrt{\left(\omega k-d l^{2}\right)^{2}+4 a k^{2} K}}{2 a k^{2}}
$$

Now summing up, we see that 2DKdV-Burgers equation (1) has a bounded exact solution with the following form

$$
\begin{align*}
u(x, y, t) & =v(\xi)=f(\xi)+\frac{\omega k-d l^{2}+\operatorname{sgn}(c) \sqrt{\left(\omega k+d l^{2}\right)^{2}+4 a k^{2} K}}{2 a k^{2}} \\
& =-\frac{6 b^{2}}{25 a c} \frac{\exp [-(2 b / 5 c k)(k x+l y-\omega t)]}{(\exp [-(b / 5 c k)(k x+l y-\omega t)]+E)^{2}}+\frac{\omega k-d l^{2}}{2 a k^{2}}+\frac{3 b^{2}}{25 a c} \tag{10}
\end{align*}
$$

where $E>0, k, l, \omega, K$ satisfy (9). Our exact solution (10) contains four changeable constants. For example, we may arbitrarily decide

$$
E>0 \quad k \neq 0 \quad l \in R \quad \operatorname{sgn}(a) K \leqslant \frac{36 b^{4} k^{2}}{2500|a| c^{2}}
$$

but ω must be

$$
\omega=\frac{d l^{2}}{k} \pm \sqrt{\frac{36 b^{4} k^{4}}{625 c^{2}}-4 a k^{2} K}
$$

If we choose $K=0$, then

$$
\omega=\frac{d l^{2}}{k} \pm \frac{6 b^{2} k}{25 \operatorname{sgn}(c) c}
$$

and thus

$$
\beta:=\frac{\omega k-d l^{2}}{2 a k^{2}}+\frac{3 b^{2}}{25 a c}=(\pm \operatorname{sgn}(c)+1) \frac{3 b^{2}}{25 a c} .
$$

When $\beta=0$ and $k=1, l=0$, the solution (10) has appeared in Jeffrey and $\mathrm{Xu}[6]$ and Halford and Vlieg-Hulstman [7]. When $\beta=6 b^{2} / 25 a c$, we obtain another solution

$$
u(x, y, t)=-\frac{6 b^{2}}{25 a c} \frac{\exp [-(2 b / 5 c k)(k x+l y-\omega t)]}{(\exp [-(b / 5 c k)(k x+l y-\omega t)]+E)^{2}}+\frac{6 b^{2}}{25 a c}
$$

with arbitrary constants $k(\neq 0), l, E(>0)$ and $\omega=d l^{2} / k+6 b^{2} k / 25 c$. Naturally, the function (10) with $d=0$ solves KdV-Burgers equation, i.e. equation (1) with $d=0$, which includes a particular analytic solution given by Xiong [8].

References

[1] Kruskal M D, Ramani A and Grammaticos B 1990 Partially Integrable Evolution Equations in Physics ed R Conte and N Boccara (Dordrecht: Kluwer Academic) p 321
[2] Johnson R S 1970 J. Fluid Mech. 4249
[3] van Wijngaarden L 1972 Ann. Rev. Fluid Mech. 4369
[4] Gao G 1985 Sci. Sinica A 28457
[5] Guan K Y and Gao G 1987 Sci. Sinica A 3064
[6] Jeffrey A and Xu S 1989 Wave Motion 11559
[7] Halford W D and Vieg-Hulstman M 1992 J. Phys. A.: Math. Gen. 252375
[8] Xiong S L 1989 Chinese Sci. Bull. 341158

