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and (mailing address) Institute of Mathematics, Fudan University, Shanghai 200433, 
People’s Republic of China 

Received 9 November 1992 

Abstract. By applying a special solution of square Hopf-Cole type to an ordinary differen- 
tial equation, we propose a bounded travelling wave solution U(& y, f )  = U(() = 
u(kr+/y-ol) to the two-dimensional Korteweg-de Vries-Burgers equation is monotonic 
and possesses an inflection point with respect to 6. 

Integrable systems, both classical and quantum, are a fascinating subject. Decades of 
research in this area have led to mathematical developments which are quite beautiful. 
However, not all systems posed in physics are integrable (see Kruskal et a1 [l]), for 
instance, the Korteweg-de Vries-Burgers (KdV-Burgers) equation. Therefore the direct 
methods to solve nonlinear systems appear to be more powerful and important. In 
this letter we will propose an exact solution to a general two-dimensional Korteweg-de 
Vries-Burgers (2DKdV-Burgers for short) equation 

(U, + 2auux + bu, + + du,, = 0 (1) 

where a, b, e, d are constants, directly from the equation itself. Equation (1) is a 
two-dimensional generalization of KdV-Burgers equation served as a nonlinear wave 
model of fluid in an elastic tube (Johnson [2]), liquid with small bubbles (van 
Wijngaarden [3]) and turbulence (Gao [ 4 ] ) .  Here we would like to construct an analytic 
solution of it by analysing an ordinary differential equation. 

First we take the form of the required solution as  follows 

u(x. Y. f) = V ( e )  e= !a+ ly - of 
where k, 1, w are constants to be determined, and thus 2DKdV-Burgers equation (1) 
becomes 

- ~ k v ~ ~ + 2 a k ~ ( v v ~ ) ~ +  bk3vfK+ck*vfK5+dl2vE6 = O .  

Integrating the above equation twice with regard to 5, we obtain 

-wkv+akzvz+bk3vS+ck4vcc+d12v= K (2) 
with the second integration constant K and the first one taken to be zero. Making the 
transformation 

o k  -d12*J(ok-  dlz)z+4akZK 
2akz v = v* = w*+ 
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equation (2) may be written as 

i J ( w k -  d12)2+4akZKw,+ak2n~:+ bk3w,, + c k ' ~ , ~ ~  =O. 

p w +  qw'+ rwc +snk = 0 

(3*) 

(4)  

Next we search for solutions of the following ordinary differential equation 

with constants p ,  4, r, s. Let us introduce a square Hopf-Cole transformation w = 
a&/+2, a =constant. This moment we have 

pw+ q w 2 i  In( +SW, 

where Fl, F2 are constants and we need a condition F,F,>O to avoid C$ =O. Now 
(5.3) reads as 

(p+2Ar+4A2s)A2F: e*"=O 

which requires p =6r2/25s in order to generate non-trivial solutions. Therefore when 
p = 6r2/25s, equation (4) has a solution 

6sA' F: e2'< _~__ 6r' exp[-(2r/5s)t] w =  -- 
4 (Fl eh'+F2)2 25qs (exp[-(r/5s)[]+E)' 

with an arbitrary constant E > 0. It is easy to calculate 

K' -2 rE$' ~ ~ = 2 a E h ~ e * * ~ ( 2 E  - 5q$3 (7) 

where #=enc + E. Thus the solution ( 6 )  is monotonic and possesses an inflection point 
.$= ( 1 / A )  ln(2E). We note that under w =  f i - p / q ,  ( 4 )  may be transformed into 

-pd + qd'+ Ezt + = 0. (8) 

The first and last coefficients of (8) are opposite sign since ps =6r2/25. Guan and Gao 
[SI have made some qualitative analyses for this kind of equation and consider it 
difficult to find solutions of (8). Here we have presented a special solution to (8) which 
belongs to the first type of Guan and Gao [ 5 ]  because of (7). 
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In what follows, we want to find solutions of (3) by using (4 )  and (8). Naturally 
we need 

25 sgn(c)cd(wk - d12)’+4ak2K = 6b2k2 (9 )  

which corresponds to p = 6r2/25s. Set 

6b2 exp[-(2b/5ck) f !  
25ac (exp[ -(b/5ck)S]+E)’ 

f ( 5 )  = -- E>O 

and obviously we have If (()1s6b2/251acl. If c<O, then we write equation ( 3 + )  as 

- ( - J ( o k  - d12)2+4ak2K)w++ ak2w:+ bk3w+*+ ck4w+sE = 0. 

By means of (S), it bas a solution 

(wk - d12)’+ 4ak2K 
ak2 

and by means of (4), equation (3-)  has a solution w- =f(f). In this way, we see that 

o k  - d12 - d ( o k  - d12)2+4ak2K 
2ak2 

U =  U+ = u-=f ( t )+  

solves (2). Similarly, when c>O, we can find a solution of (2 )  

wk-  d12+J(wk - d12)2+ 4ak2K 
2ak2 

U = U+ = U- =f(C)+ 

Now summing up, we see that 2DKdV-Burgers equation (1) has a bounded exact 
solution with the following form 

o k  - d12 + sgn(c)-/(wk + d12)’+4ak2K 
2ak2 4% Y, t )  = n(5-7 =f(S)  + 

(10) 
6b2 e x p [ - ( 2 b / 5 c k ) ( k x + l y - o r ) ]  ok-d12 3b2 +-+- 

25ac ( e x p [ - ( b / 5 c k ) ( k x + l ~ ~ - w r ) ] + E ) ~  2ak2 25ac 

where E > 0, k, 1, o, K satisfy (9). Our exact solution (10) contains four changeable 
constants. For example, we may arbitrarily decide 

- -- - 

36b‘k2 
25001alc2 

E>O k f O  I E R  sgn(a)K S 

but w must be 

If we choose K = 0, then 

d12 6b2k 
k 25sgn(c)c 

w =-+ 

and thus 

ok-d12 3b2  3b2  p := - +-= (*sgn(c) + 1) -. 
2ak2 25ac 25ac 
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When p = 0 and k = 1, I = 0, the solution (10) has appeared in JeBey and Xu [64 and 
Halford and Vlieg-Hulstman [7]. When p =6b2/25ac, we obtain another solution 

6b2 e x p [ - ( 2 b / 5 c k ) ( k x + l y - u f ) ]  66' +- 
25ac (exp[-(b/5ek)(kx + ly - ut)] + E)*  25ae U(& Y, 0 = -- 

with arbitrary constants k( ZO), 1, E(>O) and w = dI2/k+6b2k/25c. Naturally, the 
function (10) with d=O solves KdV-Burgers equation, i.e. equation (1) with d =0, 
which includes a particular analytic solution given by Xiong [SI. 
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