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An exact solution to two-dimensional Korteweg—de Vries—
Burgers equation
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and (mailing address} Institute of Mathematics, Fudan University, Shanghai 200433,
People’s Republic of China

Received 9 November 1992

Abstract. By applying a special solution of square Hopf-Cole type to an ordinary differen-
tial equation, we propose a bounded travelling wave solution u{x, y 1)=uv(f)=
v(kx+ Iy — wt) to the two-dimensional Korteweg-de Vries-Burgers equation is monotonic
and possesses an inflection point with respect to £

Integrable systems, both classical and quantum, are a fascinating subject. Decades of
research in this area have led to mathematical developments which are quite beautiful.
However, not all systems posed in physics are integrable (see Kruskal ef al [1]), for
instance, the Korteweg-de Vries- Burgers (KdV-Burgers) equation. Therefore the direct
methods to solve nonlinear systems appear to be more powerful and important. In
this letter we will propose an exact solution to a general two-dimensional Korteweg-de
Vries-Burgers (2DKdV-Burgers for short) equation

(4, + 2auu, + bug + cttpe ), + dity, =0 (1)
where a, b, ¢, d are constants, directly from the equation itself. Equation (1} is a
two-dimensional generalization of KdV-Burgers equation served as a nonlinear wave
moadel of fluid in an elastic tube (Johnson [2]), liguid with small bubbles (van
Wijngaarden [3]) and turbulence (Gao [4]). Here we would like to construct an analytic

solution of it by analysing an ordinary differential equation.
First we take the form of the required solution as follows

u(x,y, t)=v(§) E=kx+ly—wt

where k, I, w are constants to be determined, and thus 2DKdV-Burgers equation (1)
becomes

- wkvg.f + 2ﬂk2( vvg)f + bk3 Ugee + devfﬁfé- + dlzﬁgg =qQ.
Integrating the above equation twice with regard to £ we obtain
- wko+ ak®v?+ bk®v, + ck'v, + dPv =K (2)

with the second integration constant K and the first one taken to be zero. Making the
transformation

wk — dP =V (wk — dPP)* + 4ak°K
+ 2
2ak

v=t.=w,
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equation (2) may be written as

£V (wk—dP) +4ak* K oo+ akw? + bk*wog + ck*w. e = 0. (3%)

Next we search for solutions of the following ordinary differential equation
pw+gw'+rwy+sw =0 (4)

with constants p, g, r, 5 Let us introduce a square Hopf-Cole transformation w=
adi/¢*, @ = constant. This moment we have

pw+ gw’+ rw, + swy,
2 4 3
=apﬁ+a2q%§+2ar(2§%§—%§)
2 + 5 2 3 4
+.’»’:ozs(¢§g (:’f(b%— ¢;?‘EE+%)
= a[pd;+2rdeby +25( 5+ bedbee) 167
~2a(rgpi+55¢ids)d >+ alagpi+6sdpd) o™

Hence we may choose

aq+65=0 (5a)

s+ 55dg =0 (5b)

PE+2rdbedbe + 25(D %+ bpdyge) = 0. (5¢)
By (5.1), a = ~6s/4, and by (5.2),

¢=¢(£)=F,e*+F, A=—71/5s

where F,, F, are constants and we need a condition F,F,>0 to avoid ¢ =0. Now
(5.3) reads as

(p+2Ar+4A%5)A Fi e =0

which requires p =6r*/255 in order to generate non-trivial solutions. Therefore when
p =6r*/25s, equation (4) has a solution

_6sA? Fie™¢ 67  exp[—(2r/55)¢]

T g (RHE) . 25gs (expl—(r/5)E1+ EV ©
with an arbitrary constant E > 0. It is easy to calculate
2
Wy rEv; Wy =2aEA* M(2E M)y (7

" sqy’

where ¢ = e + E. Thus the solution (6) is monotonic and possesses an inflection point
£=(1/)A) In(2E). We note that under w= % —p/g, (4) may be transformed into

—pW+ gw+ rb, + 5wy =0. (8)

The first and last coefficients of (8) are opposite sign since ps = 67°/25. Guan and Gao
[5] have made some qualitative analyses for this kind of equation and consider it
difficult to find solutions of (8). Here we have presented a special sotution to (8) which
belongs to the first type of Guan and Gao [5] because of (7).
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In what follows, we want to find solutions of (3) by using (4) and (8). Naturally
we need

25 sgn(e)ev(wk — dP)* +4ak*K = 6b°k> ' (9)
which corresponds to p = 6r°/25s. Set

6b*  exp[—(2b/5ck)£]
25ac (exp[ —(b/5ck}£]+ EY

and obviously we have | f(£)| < 6b%/25|ac|. If ¢ <0, then we write equation (3+) as
—(=V(wk—dP*)?+4ak* K )w..+ gk w2 + bk w,. g + ck*w. g = 0.

f(&=- E>0

By means of (8), it has a solution
v (wk — dI*y*+ 4ak*K
ak?
and by means of (4), equation (3—) has a solution w_=f(£). In this way, we see that
wk — d? = (wk — dPY +4ak’K
2ak?

W =f(§)_

v=v,=v_=f(£{)}+

solves (2). Similarly, when ¢> 0, we can find a solution of (2)
wk — di*+v(wk — dP)* + 4ak’K
2ak* ’

v=v,=v.=f({)}+

Now summing up, we see that 2DKdV-Burgers equation (1) has a bounded exact
solution with the following form
wk —dI* +sgn(c)V (wk + dP)*+ 4ak°K

2ak”
_ 6b*  exp[—(2b/5ck)(kx+1ly~wt)] mk—dl"+ 3b*
" 25ac (exp[ —(b/5ck}kx+ly—wt)]+E) 2ak®  25ac

where E>0, k, |, w, K satisfy (9). Our exact solution (10) contains four changeable
constants. For example, we may arbitrarily decide

u(x, y, )= v(£)=f(£)+

(10)

36b°k”

E>0  k#0  IeR LA
© 8@ K <3 olalc?

but w must be

ar  [360°Kk
LAY L AL
=% 6252 0

If we choose K =0, then
ar 6b%k

= —4 ——
RPY sgn(cie

and thus
_mk-—d12 3b? 3h?

=80T8 L 20 _( + .
B=20E Tosae - (Fsenle) 1) oo




L20 Letter to the Editor

When B =0 and k=1, [ =0, the solution (10) has appeared in Jefirey and Xu [6] and
Halford and Viieg-Hulstman [7]. When 8 = 65%/25ac, we obtain another solution
_ 6% exp[—(2b/5ck)(kx+ly—wt)]  6b°
25ac (exp[—-(b/5ck)(kx+ly—wt)]+ E)* 25ac
with arbitrary constants k(#0),7, E(>0) and w = dl*/k+6b*k/25¢c. Naturally, the

function {10) with d =0 solves KdV-Burgers equation, i.e. equation (1) with d =0,
which includes a particular analytic solution given by Xiong [8].

u(x, y, t)=
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